Mesh Decimation

Mark Pauly
Applications

• Oversampled 3D scan data

~150k triangles

~80k triangles
Applications

- Overtessellation: E.g. iso-surface extraction
Applications

• Multi-resolution hierarchies for
 – efficient geometry processing
 – level-of-detail (LOD) rendering
Applications

• Adaptation to hardware capabilities
Size-Quality Tradeoff

error

size
Outline

• Applications

• Problem Statement

• Mesh Decimation Methods
 – Vertex Clustering
 – Iterative Decimation
 – Extensions
 – Remeshing
 – Variational Shape Approximation
Problem Statement

• Given: \(M = (V, F) \)

• Find: \(M' = (V', F') \) such that

1. \(|V'| = n < |V|\) and \(\|M - M'\| \) is minimal, or

2. \(\|M - M'\| < \epsilon \) and \(|V'|\) is minimal
Problem Statement

• Given: $\mathcal{M} = (\mathcal{V}, \mathcal{F})$

• Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that

1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $\|\mathcal{M} - \mathcal{M}'\|$ is minimal, or

2. $\|\mathcal{M} - \mathcal{M}'\| < \epsilon$ and $|\mathcal{V}'|$ is minimal

hard!

→ look for sub-optimal solution
Problem Statement

• Given: $\mathcal{M} = (V, F)$

• Find: $\mathcal{M}’ = (V’, F’) \text{ such that}$

1. $|V'| = n < |V|$ and $\|\mathcal{M} - \mathcal{M}'\|$ is minimal, or

2. $\|\mathcal{M} - \mathcal{M}'\| < \epsilon$ and $|V'|$ is minimal

• Respect additional fairness criteria
 – normal deviation, triangle shape, scalar attributes, etc.
Outline

• Applications
• Problem Statement
• Mesh Decimation Methods
 – Vertex Clustering
 – Iterative Decimation
 – Extensions
Vertex Clustering

- Cluster Generation
- Computing a representative
- Mesh generation
- Topology changes
Vertex Clustering

- Cluster Generation
 - Uniform 3D grid
 - Map vertices to cluster cells

- Computing a representative

- Mesh generation

- Topology changes
Vertex Clustering

• Cluster Generation
 – Hierarchical approach
 – Top-down or bottom-up

• Computing a representative

• Mesh generation

• Topology changes
Vertex Clustering

• Cluster Generation

• Computing a representative
 – Average/median vertex position
 – Error quadrics

• Mesh generation

• Topology changes
Computing a Representative

Average vertex position \rightarrow Low-pass filter
Computing a Representative Median vertex position \rightarrow Sub-sampling
Computing a Representative

Error quadrics
Error Quadrics

- Squared distance to plane

\[p = (x, y, z, 1)^T, \quad q = (a, b, c, d)^T \]

\[\text{dist}(q, p)^2 = (q^T p)^2 = p^T (qq^T) p =: p^T Q_q p \]

\[Q_q = \begin{bmatrix}
 a^2 & ab & ac & ad \\
 ab & b^2 & bc & bd \\
 ac & bc & b^2 & cd \\
 ad & bd & cd & d^2
\end{bmatrix} \]
Error Quadrics

• Sum distances to vertex’ planes

\[
\sum_i \text{dist}(q_i, p)^2 = \sum_i p^T Q_{q_i} p = p^T \left(\sum_i Q_{q_i} \right) p =: p^T Qp p
\]

• Point that minimizes the error

\[
\begin{bmatrix}
q_{11} & q_{12} & q_{13} & q_{14} \\
q_{21} & q_{22} & q_{23} & q_{24} \\
q_{31} & q_{32} & q_{33} & q_{34} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
p^* = \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}
\]
Comparison

average

median

error quadric
Vertex Clustering

- Cluster Generation
- Computing a representative
- Mesh generation
 - Clusters $p \leftrightarrow \{p_0, ..., p_n\}$, $q \leftrightarrow \{q_0, ..., q_m\}$
 - Connect (p,q) if there was an edge (p_i,q_j)
- Topology changes
Vertex Clustering

• Cluster Generation
• Computing a representative
• Mesh generation

• Topology changes
 – If different sheets pass through one cell
 – Not manifold
Outline

• Applications
• Problem Statement
• Mesh Decimation Methods
 – Vertex Clustering
 – Iterative Decimation
 – Extensions
Incremental Decimation

• General Setup
 • Decimation operators
 • Error metrics
 • Fairness criteria
 • Topology changes
General Setup

Repeat:

pick mesh region
apply decimation operator

Until no further reduction possible
Greedy Optimization

For each region
 evaluate quality after decimation
 enque(quality, region)

Repeat:
 pick best mesh region
 apply decimation operator
 update queue
Until no further reduction possible
Global Error Control

For each region
 evaluate quality after decimation
 enqueue(quality, region)

Repeat:
 pick best mesh region
 if error < ε
 apply decimation operator
 update queue
Until no further reduction possible
Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes
Decimation Operators

• What is a "region"?
• What are the DOF for re-triangulation?
• Classification
 – Topology-changing vs. topology-preserving
 – Subsampling vs. filtering
 – Inverse operation → progressive meshes
Vertex Removal

Select a vertex to be eliminated
Vertex Removal

Select all triangles sharing this vertex
Vertex Removal

Remove the selected triangles, creating the hole
Vertex Removal

Fill the hole with triangles
Decimation Operators

- Remove vertex
- Re-triangulate hole
 - Combinatorial DOFs
 - Sub-sampling
Decimation Operators

- Merge two adjacent triangles
- Define new vertex position
 - Continuous DOF
 - Filtering
Decimation Operators

- Collapse edge into one end point
 - Special vertex removal
 - Special edge collapse
- No DOFs
 - One operator per half-edge
 - Sub-sampling!
Edge Collapse
Priority Queue Updating
Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes
Local Error Metrics

• Local distance to mesh [Schroeder et al. 92]
 – Compute average plane
 – No comparison to original geometry
Global Error Metrics

• Simplification envelopes [Cohen et al. 96]
 – Compute (non-intersecting) offset surfaces
 – Simplification guarantees to stay within bounds
Global Error Metrics

• (Two-sided) Hausdorff distance: Maximum distance between two shapes
 – In general $d(A,B) \neq d(B,A)$
 – Computationally involved
Global Error Metrics

• Scan data: One-sided Hausdorff distance sufficient
 – From original vertices to current surface
Global Error Metrics

• Error quadrics [Garland, Heckbert 97]
 – Squared distance to planes at vertex
 – No bound on true error

\[p_i^T Q_i p_i = 0, \ i=\{1,2\} \]

\[Q_3 = Q_1 + Q_2 \]

solve \(v_3^T Q_3 v_3 = \min \]

\(< \varepsilon \ ? \ \rightarrow \ \text{ok} \)
Complexity

- $N =$ number of vertices
- Priority queue for half-edges
 - $6N \times \log(6N)$
- Error control
 - Local $O(1) \Rightarrow$ global $O(N)$
 - Local $O(N) \Rightarrow$ global $O(N^2)$
Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes
Fairness Criteria

• Rate quality of decimation operation
 – Approximation error
 – Triangle shape
 – Dihedral angles
 – Valence balance
 – Color differences
 – ...

Fairness Criteria

• Rate quality after decimation
 – Approximation error
 – Triangle shape
 – Dihedral angles
 – Valence balance
 – Color differences
 – ...

\[\frac{r_1}{e_1} < \frac{r_2}{e_2} \]
Fairness Criteria

• Rate quality after decimation
 – Approximation error
 – Triangle shape
 – Dihedral angles
 – Valence balance
 – Color differences
 – ...
Fairness Criteria

• Rate quality after decimation
 – Approximation error
 – Triangle shape
 – Dihedral angles
 – Valence balance
 – Color differences
 – ...

Mark Pauly - ETH Zurich
Fairness Criteria

• Rate quality after decimation
 – Approximation error
 – Triangle shape
 – Dihedral angles
 – Valence balance
 – Color differences
 – ...

Mark Pauly - ETH Zurich
Fairness Criteria

• Rate quality after decimation
 – Approximation error
 – Triangle shape
 – Dihedral angles
 – Valence balance
 – Color differences
 – ...
Fairness Criteria

• Rate quality after decimation
 – Approximation error
 – Triangle shape
 – Dihedral angles
 – Valence balance
 – Color differences
 – ...

[Diagram showing geometric shapes and network structures]
Fairness Criteria

• Rate quality after decimation
 – Approximation error
 – Triangle shape
 – Dihedral angles
 – Valance balance
 – Color differences
 – ...
Incremental Decimation

• General Setup
• Decimation operators
• Error metrics
• Fairness criteria
• Topology changes
Topology Changes?

- Merge vertices across non-edges
 - Changes mesh topology
 - Need *spatial neighborhood* information
 - Generates *non-manifold* meshes
Topology Changes?

- Merge vertices across non-edges
 - Changes mesh topology
 - Need *spatial neighborhood* information
 - Generates *non-manifold* meshes

![Manifold vs. Non-manifold](image)
Comparison

- **Vertex clustering**
 - fast, but difficult to control simplified mesh
 - topology changes, non-manifold meshes
 - global error bound, but often not close to optimum

- **Iterative decimation with quadric error metrics**
 - good trade-off between mesh quality and speed
 - explicit control over mesh topology
 - restricting normal deviation improves mesh quality
Outline

• Applications
• Problem Statement
• Mesh Decimation Methods
 – Vertex Clustering
 – Iterative Decimation
 – Extensions
Out-of-core Decimation

- Handle very large data sets that do not fit into main memory
- Key: Avoid random access to mesh data structure during simplification
- Examples
 - Garland, Shaffer: *A Multiphase Approach to Efficient Surface Simplification*, IEEE Visualization 2002
Multiphase Simplification

1. Phase: Out-of-core clustering
 - compute accumulated error quadrics and vertex representative for each cell of uniform voxel grid

2. Phase: In-core iterative simplification
 - compute fundamental quadrics
 - iteratively contract edge of smallest cost
Multiphase Simplification

1. Phase: Out-of-core clustering
 - compute accumulated error quadrics and vertex representative for each cell of uniform voxel grid

2. Phase: In-core iterative simplification
 - compute fundamental quadrics
 - use accumulated quadrics from clustering phase
 - iteratively contract edge of smallest cost

→ achieves a coupling between the two phases
Multiphase Simplification

Garland, Shaffer: *A Multiphase Approach to Efficient Surface Simplification*, IEEE Visualization 2002
Multiphase Simplification

Out-of-core Decimation

- Streaming approach based on edge collapse operations using QEM
- Pre-sorted input stream allows fixed-sized active working set independent of input and output model complexity

Out-of-core Decimation

• Randomized multiple choice optimization avoids global heap data structure

• Special treatment for boundaries required