

Surface Representations

Leif Kobbelt RWTH Aachen University

Outline

- (mathematical) geometry representations
 - parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Outline

- (mathematical) geometry representations
 parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Mathematical Representations

- parametric
 - range of a function
 - surface patch

$$\mathbf{f}: R^2 \to R^3, \quad \mathcal{S}_\Omega = \mathbf{f}(\Omega)$$

- implicit
 - kernel of a function
 - level set

$$F: \mathbb{R}^3 \to \mathbb{R}, \quad \mathcal{S}_c = \{\mathbf{p}: F(\mathbf{p}) = c\}$$

2D-Example: Circle

parametric

$$\mathbf{f}: t \mapsto \left(\begin{array}{c} r\cos(t) \\ r\sin(t) \end{array}\right), \quad \mathcal{S} = \mathbf{f}([0, 2\pi])$$

implicit

$$F(x, y) = x^{2} + y^{2} - r^{2}$$
$$S = \{(x, y) : F(x, y) = 0\}$$

2D-Example: Island

• parametric

$$\mathbf{f}: t \mapsto \begin{pmatrix} ??? \\ ??? \end{pmatrix}, \quad \mathcal{S} = \mathbf{f}([0, 2\pi])$$

- implicit
 - F(x, y) = ??? $S = \{(x, y) : F(x, y) = 0\}$

Approximation Quality

Approximation Quality

continuity

– interpolation / approximation $\mathbf{f}(u_i, v_i) \approx \mathbf{p}_i$

- topological consistency
 - manifold-ness
- smoothness
 - $C^{0}, C^{1}, C^{2}, ..., C^{k}$
- fairness
 - curvature distribution

- continuity
 - interpolation / approximation $\mathbf{f}(u_i, v_i) \approx \mathbf{p}_i$
- topological consistency
 manifold-ness
- smoothness
 - $C^{0}, C^{1}, C^{2}, ..., C^{k}$
- fairness
 - curvature distribution

continuity

– interpolation / approximation $\mathbf{f}(u_i, v_i) \approx \mathbf{p}_i$

- topological consistency
 manifold-ness
- smoothness
 - $C^0, C^1, C^2, ..., C^k$
- fairness
 - curvature distribution

continuity

– interpolation / approximation $\mathbf{f}(u_i, v_i) \approx \mathbf{p}_i$

- topological consistency
 manifold-ness
- smoothness
 - $C^{0}, C^{1}, C^{2}, ..., C^{k}$
- fairness
 - curvature distribution

continuity

– interpolation / approximation $\mathbf{f}(u_i, v_i) \approx \mathbf{p}_i$

- topological consistency – manifold-ness
- smoothness
 - $C^{0}, C^{1}, C^{2}, ..., C^{k}$
- fairness
 - curvature distribution

Topological Consistency

Topological Consistency

Topological Consistency

- parametric
 - disk-shaped neighborhoods
 - $-\mathbf{f}(D_{\varepsilon}[u,v]) = D_{\delta}[\mathbf{f}(u,v)] + \text{injectivity}$

- implicit
 - surface of a "physical" solid

$$-F(x, y, z) = c, \quad \|\nabla F(x, y, z)\| \neq 0$$

- parametric
 - disk-shaped neighborhoods
 - $-\mathbf{f}(D_{\varepsilon}[u,v]) = D_{\delta}[\mathbf{f}(u,v)] + \text{injectivity}$

- parametric
 - disk-shaped neighborhoods
 - $-\mathbf{f}(D_{\varepsilon}[u,v]) = D_{\delta}[\mathbf{f}(u,v)] + \text{injectivity}$

- implicit
 - surface of a "physical" solid

$$-F(x, y, z) = c, \quad \|\nabla F(x, y, z)\| \neq 0$$

- implicit
 - surface of a "physical" solid
 - $-F(x, y, z) = c, \quad \|\nabla F(x, y, z)\| \neq 0$

- implicit
 - surface of a "physical" solid
 - $-F(x, y, z) = c, \quad \|\nabla F(x, y, z)\| \neq 0$

Smoothness

- position continuity : C⁰
- tangent continuity : C¹
- curvature continuity : C²

Smoothness

- position continuity : C⁰
- tangent continuity : C¹
- curvature continuity : C²

Smoothness

- position continuity : C⁰
- tangent continuity : C¹
- curvature continuity : C²

Fairness

- minimum surface area
- minimum curvature
- minimum curvature variation

Outline

- (mathematical) geometry representations
 parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Polynomials

computable functions

$$\mathbf{p}(t) = \sum_{i=0}^{p} \mathbf{c}_{i} t^{i} = \sum_{i=0}^{p} \mathbf{c}'_{i} \Phi_{i}(t)$$

• Taylor expansion $\int_{p}^{p} \frac{1}{p} f(i)$

$$\mathbf{f}(h) = \sum_{i=0}^{i} \frac{1}{i!} \mathbf{f}^{(i)}(0) h^{i} + O(h^{p+1})$$

interpolation error (mean value theorem)

$$\mathbf{p}(t_i) = \mathbf{f}(t_i), \quad t_i \in [0, h]$$
$$\|\mathbf{f}(t) - \mathbf{p}(t)\| = \frac{1}{(p+1)!} \mathbf{f}^{(p+1)}(t^*) \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$

Polynomials

computable functions

$$\mathbf{p}(t) = \sum_{i=0}^{p} \mathbf{c}_{i} t^{i} = \sum_{i=0}^{p} \mathbf{c}'_{i} \Phi_{i}(t)$$

Taylor expansion

$$\mathbf{f}(h) = \sum_{i=0}^{p} \frac{1}{i!} \mathbf{f}^{(i)}(0) h^{i} + O(h^{p+1})$$

interpolation error (mean value theorem)

$$\mathbf{p}(t_i) = \mathbf{f}(t_i), \quad t_i \in [0, h]$$
$$\|\mathbf{f}(t) - \mathbf{p}(t)\| = \frac{1}{(p+1)!} \mathbf{f}^{(p+1)}(t^*) \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$

Polynomials

computable functions

$$\mathbf{p}(t) = \sum_{i=0}^{p} \mathbf{c}_{i} t^{i} = \sum_{i=0}^{p} \mathbf{c}'_{i} \Phi_{i}(t)$$

Taylor expansion

$$\mathbf{f}(h) = \sum_{i=0}^{p} \frac{1}{i!} \mathbf{f}^{(i)}(0) h^{i} + O(h^{p+1})$$

interpolation error (mean value theorem)

$$\mathbf{p}(t_i) = \mathbf{f}(t_i), \quad t_i \in [0, h]$$

$$\mathbf{f}(t) - \mathbf{p}(t) \| = \frac{1}{(p+1)!} \mathbf{f}^{(p+1)}(t^*) \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$

interpolation error of the function values

$$||F(x, y, z) - P(x, y, z)|| = O(h^{(p+1)})$$

approximation error of the contour

$$\Delta \mathbf{p} = \lambda \nabla F(\mathbf{p}) \qquad \frac{F(\mathbf{p} + \Delta \mathbf{p}) - F(\mathbf{p})}{\|\Delta \mathbf{p}\|} \approx \|\nabla F(\mathbf{p})\|$$

interpolation error of the function values

$$||F(x, y, z) - P(x, y, z)|| = O(h^{(p+1)})$$

approximation error of the contour

$$\Delta \mathbf{p} = \lambda \nabla F(\mathbf{p}) \qquad \frac{F(\mathbf{p} + \Delta \mathbf{p}) - F(\mathbf{p})}{\|\Delta \mathbf{p}\|} \approx \|\nabla F(\mathbf{p})\|$$

p+∆p

interpolation error of the function values

$$||F(x, y, z) - P(x, y, z)|| = O(h^{(p+1)})$$

approximation error of the contour

$$\Delta \mathbf{p} = \lambda \nabla F(\mathbf{p}) \qquad \|\Delta \mathbf{p}\| \approx \frac{F(\mathbf{p} + \Delta \mathbf{p}) - F(\mathbf{p})}{\|\nabla F(\mathbf{p})\|}$$

(gradient bounded from below)

Polynomial Approximation

- approximation error is O(h^{p+1})
- improve approximation quality by
 - increasing \mathbf{p} ... higher order polynomials
 - decreasing h ... smaller / more segments
- issues
 - smoothness of the target data $(\max_{t} f^{(p+1)}(t))$
 - handling higher order patches (e.g. boundary conditions)

Polynomial Approximation

- approximation error is O(h^{p+1})
- improve approximation quality by
 - increasing p ... higher order polymmial
 - decreasing h ... smaller / more sigmenter

- smoothness of the target data (max_t $f^{(p+1)}(t)$)

- handling higher order patches (e.g. boundary conditions)

İSSİ

Piecewise Definition

- parametric
 - Euler formula: V E + F = 2(1-g)
 - regular quad meshes
 - $F \approx V$
 - $E \approx 2V$
 - average valence = 4
 - quasi-regular
 - semi-regular

- parametric
 - Euler formula: V E + F = 2(1-g)
 - regular triangle meshes
 - $F \approx 2V$
 - $E \approx 3V$
 - average valence = 6
 - quasi-regular
 - semi-regular

quasi regula R(emergenergy Regulasi)

- implicit
 - regular voxel grids O(h-3)
 - three color octrees
 - surface-adaptive refinement O(h⁻²)
 - feature-adaptive refinement O(h⁻¹)
 - irregular hierarchies
 - binary space partition O(h⁻¹) (BSP)

3-Color Octree

1048576 cells

12040 cells

Adaptively Sampled Distance Fields

12040 cells

895 cells

Binary Space Partitions

- polygonal meshes are a good compromise
 - approximation $O(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement

- polygonal meshes are a good compromise
 - approximation $O(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement

- polygonal meshes are a good compromise
 - approximation $O(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement

- polygonal meshes are a good compromise
 - approximation $O(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement

- polygonal meshes are a good compromise
 - approximation $O(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement
 - efficient rendering

- polygonal meshes are a good compromise
 - approximation $O(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement
 - efficient rendering
- implicit representation can support efficient access to vertices, faces,

Outline

- (mathematical) geometry representations
 - parametric vs. implicit
- approximation properties
- types of operations
 - evaluation
 - distance queries
 - modification / deformation
- data structures

- smooth parametric surfaces
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$

- smooth parametric surfaces
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)

$$(\alpha, \beta) \mapsto \alpha \mathbf{P}_1 + \beta \mathbf{P}_2 + (1 - \alpha - \beta) \mathbf{P}_3$$

$$0 \le \alpha, \quad 0 \le \beta, \quad \alpha + \beta \le 1$$

- smooth parametric surfaces
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes

- positions (barycentric coordinates)

$$(\alpha, \beta, \gamma) \mapsto \alpha \mathbf{P}_1 + \beta \mathbf{P}_2 + \gamma \mathbf{P}_3$$

 $\alpha + \beta + \gamma = 1$

- smooth parametric surfaces
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)

$$\alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w} \mapsto \alpha \mathbf{P}_1 + \beta \mathbf{P}_2 + \gamma \mathbf{P}_3$$
$$\alpha + \beta + \gamma = 0$$

- smooth parametric surfaces
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes

 positions (barycentric coordinates)

→ Parametrization Bruno

$$\alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w} \mapsto \alpha \mathbf{P}_1 + \beta \mathbf{P}_2 + \gamma \mathbf{P}_3$$

$$\alpha + \beta + \gamma = 0$$

- smooth parametric surfaces
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)
 - normals (per face, Phong)

$$\mathbf{N} = (\mathbf{P}_2 - \mathbf{P}_1) \times (\mathbf{P}_3 - \mathbf{P}_1)$$

- smooth parametric surfaces
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)
 - normals (per face, Phong)

$$\alpha \,\mathbf{u} + \beta \,\mathbf{v} + \gamma \,\mathbf{w} \ \mapsto \ \alpha \,\mathbf{N}_1 + \beta \,\mathbf{N}_2 + \gamma \,\mathbf{N}_3$$

- smooth parametric surfaces
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)
 - normals (per face, Phong)
 - curvatures ... (\rightarrow smoothing, Mark)

Distance Queries

- parametric
 - for smooth surfaces: find orthogonal base point

$$[\mathbf{p} - \mathbf{f}(u, v)] \times \mathbf{n}(u, v) = \mathbf{0}$$

- for triangle meshes
 - use kd-tree or BSP to find closest triangle
 - find base point by Newton iteration (use Phong normal field)

- parameteric
 - control vertices

$$\mathbf{f}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{c}_{ij} N_{i}^{n}(u) N_{j}^{m}(v)$$

- free-form deformation
- boundary constraint modeling

- parameteric
 - control vertices

$$\mathbf{f}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{c}_{ij} N_{i}^{n}(u) N_{j}^{m}(v)$$

- free-form deformation
- boundary constraint modeling

- parameteric
 - control vertices
 - free-form deformation
 - boundary constraint modeling

- parameteric
 - control vertices
 - free-form deformation
 - boundary constraint modeling

- parameteric
 - control vertices
 - free-form deformation
 - boundary constraint modeling

- parameteric
 - control vertices
 - free-form deformation
 - boundary constraint modeling

- parameteric
 - control vertices
 - free-form deformation
 - boundary constraint modeling

→ Mesh Editing Mario

Outline

- (mathematical) geometry representations
 - parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Mesh Data Structures

- how to store geometry & <u>connectivity</u>?
- compact storage
 - file formats
- efficient algorithms on meshes
 - identify time-critical operations
 - all vertices/edges of a face
 - all incident vertices/edges/faces of a vertex

Face Set (STL)

- face:
 - 3 positions

Triangles						
$x_{11} y_{11} z_{11}$	$x_{12} y_{12} z_{12}$	x_{13} y_{13} z_{13}				
$x_{21} y_{21} z_{21}$	x_{22} y_{22} z_{22}	x_{23} y_{23} z_{23}				
•••	• • •	• • •				
$\mathbf{x}_{\texttt{F1}}$ $\mathbf{y}_{\texttt{F1}}$ $\mathbf{z}_{\texttt{F1}}$	$\mathbf{x}_{\mathtt{F2}}$ $\mathbf{y}_{\mathtt{F2}}$ $\mathbf{z}_{\mathtt{F2}}$	\mathbf{x}_{F3} \mathbf{y}_{F3} \mathbf{z}_{F3}				

36 B/f = 72 B/v no connectivity!

Shared Vertex (OBJ, OFF)

- vertex:
 - position
- face:
 - vertex indices

Vertices	Triangles		
$\mathbf{x}_1 \ \mathbf{y}_1 \ \mathbf{z}_1$	V 11	V 12	V 13
• • •		• • •	
$\mathbf{x}_{v} \mathbf{y}_{v} \mathbf{z}_{v}$		• • •	
		• • •	
		• • •	
	\mathbf{V}_{F1}	$v_{\rm F2}$	V _{F3}

12 B/v + 12 B/f = 36 B/v no neighborhood info

Face-Based Connectivity

- vertex:
 - position
 - 1 face
- face:
 - 3 vertices
 - 3 face neighbors

no edges!
Edge-Based Connectivity

- vertex
 - position
 - 1 edge
- edge
 - 2 vertices
 - 2 faces
 - 4 edges
- face
 - 1 edge

120 B/v edge orientation?

Halfedge-Based Connectivity

- vertex
 - position
 - 1 halfedge
- halfedge
 - 1 vertex
 - 1 face
 - 1, 2, or 3 halfedges
- face
 - 1 halfedge

96 to 144 B/v no case distinctions during traversal

1. Start at vertex

- 1. Start at vertex
- 2. Outgoing halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite
- 6. Next
- 7. ...

Halfedge-Based Libraries

- CGAL
 - -www.cgal.org
 - computational geometry
 - free for non-commercial use
- OpenMesh
 - -www.openmesh.org
 - mesh processing
 - free, LGPL licence

78

Literature

- Kettner, Using generic programming for designing a data structure for polyhedral surfaces, Symp. on Comp. Geom., 1998
- Campagna et al, *Directed Edges A Scalable Representation for Triangle Meshes*, Journal of Graphics Tools 4(3), 1998
- Botsch et al, OpenMesh A generic and efficient polygon mesh data structure, OpenSG Symp. 2002

79

Outline

- (mathematical) geometry representations
 - parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures