

Efficient Solvers for (sparse symm. pos. def.) Linear Systems

Mario Botsch ETH Zurich

Problems in Geometry Processing

- Generic formulation as a PDE
 - Based on partial derivatives
- Discretization for triangle meshes
 - Finite elements / differences
 - Lead to linear systems (typically 10⁴ to 10⁶ DoFs)
- Partial derivatives are local operators
 - Sparse linear systems

Problems in Geometry Processing

- Most often the PDE can be considered as the Euler-Lagrange equation of an energy minimization problem
- or A^TAx = A^Tb emerges as the normal equation for a least squares problem
- Systems are usually symmetric and pos. definite

Problems in Geometry Processing

- Linear problems:
 - Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Non-linear problems:

– Solve sequence of linear systems $A_k x_k = b_k$

Matrix A typically is

– large

sparse
symmetric positive definite

Non-spd systems: See course notes

Overview

Application scenarios

- Linear system solvers
- Benchmarks

Implicit Fairing

Variational Energy Minimization

Explicit Hole Filling

Conformal Parameterization

Mario Botsch, ETH Zurich

Variational Mesh Editing

 $\Delta_{\mathcal{S}}^k \mathbf{d} = 0$

Gradient-Based Editing

Laplace-Beltrami Discretization

$$\Delta_{\mathcal{S}} f(v) := \frac{2}{A(v)} \sum_{v_i \in \mathcal{N}_1(v)} \left(\cot \alpha_i + \cot \beta_i \right) \left(f(v_i) - f(v) \right)$$

$$\begin{pmatrix} \vdots \\ \Delta_{\mathcal{S}}^{k} f_{i} \\ \vdots \end{pmatrix} = (\mathbf{DM})^{k} \begin{pmatrix} \vdots \\ f_{i} \\ \vdots \end{pmatrix}$$

$$\mathbf{M}_{ij} = \begin{cases} \cot \alpha_{ij} + \cot \beta_{ij}, & i \neq j, \ j \in \mathcal{N}_1(v_i) \\ 0 & i \neq j, \ j \notin \mathcal{N}_1(v_i) \\ -\sum_{v_j \in \mathcal{N}_1(v_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) & i = j \end{cases}$$

$$\mathbf{D} = \operatorname{diag}\left(\dots, \frac{2}{A(v_i)}, \dots\right)$$

$$\begin{pmatrix} \vdots \\ \Delta_{\mathcal{S}}^{k} f_{i} \\ \vdots \end{pmatrix} = (\mathbf{DM})^{k} \begin{pmatrix} \vdots \\ f_{i} \\ \vdots \end{pmatrix}$$

- Degree of sparsity: $1 + 3 (k^2 + k)$
 - k=1 ... 7
 - k=2 ... 19
 - k=3 ... 37

$$\begin{pmatrix} \vdots \\ \Delta_{\mathcal{S}}^{k} f_{i} \\ \vdots \end{pmatrix} = (\mathbf{DM})^{k} \begin{pmatrix} \vdots \\ f_{i} \\ \vdots \end{pmatrix}$$

- (DM)^k is not symmetric, but M(DM)^{k-1} is
- ➡ Instead of (DM)^k x = b
 solve M(DM)^{k-1} x = D⁻¹b

$$\begin{pmatrix} \vdots \\ \Delta_{\mathcal{S}}^{k} f_{i} \\ \vdots \end{pmatrix} = (\mathbf{DM})^{k} \begin{pmatrix} \vdots \\ f_{i} \\ \vdots \end{pmatrix}$$

- Positive definiteness
 - Can be derived by variational calculus
 - Energy minimization subject to constraints

Least Squares Conformal Maps

Non-Linear Problems

Non-linear minimization (Newton) $\mathbf{H}(\mathbf{x}) \mathbf{h} = -\nabla \mathbf{f}(\mathbf{x})$

Non-linear least squares (Gauss-Newton)

$$\mathbf{J}(\mathbf{x})^T \, \mathbf{J}(\mathbf{x}) \, \mathbf{h} = -\mathbf{J}(\mathbf{x})^T \, \mathbf{f}(\mathbf{x})$$

Overview

- Application scenarios
- Linear system solvers
- Benchmarks

Dense Direct Solvers

- Symmetric positive definite (spd)
 - Cholesky factorization $(\mathbf{A}=\mathbf{L}\mathbf{L}^{\mathsf{T}})$
 - Solve systems by back-substitution
 - Numerically stable
- Complexity
 - Factorization O(n³)
 - Back-substitution O(n²)

Iterative Solvers

- Symmetric, positive definite, sparse
 - Conjugate gradients
 - Krylov spaces $\mathbf{K}_i = \{ \mathbf{b}, \mathbf{Ab}, ..., \mathbf{A}^{i-1}\mathbf{b} \}$
 - Robust, monotone convergence
 - Exact solution after n iterations
- Complexity
 - Each iteration is O(n) (sparse!)
 - Total complexity O(n²)

Iterative Solvers

- Numerical convergence rate
 - Depends on matrix condition
 - Preconditioning is mandatory $(\mathbf{A}^{T} = \mathbf{P}\mathbf{A}\mathbf{P}^{T})$
 - Problematic for large systems ...
- Iterative solvers are "smoothers"
 - Rapid elimination of high frequency errors
 - Impractically slow convergence for low frequencies

- Build a hierarchy of meshes
 - Mesh decimation
 - O(log n) levels

- Apply some pre-smoothing steps on finest level
 - Removes highest error frequencies
- Remaining low frequency error (r=b-Ax)
 - Corresponds to high frequencies on coarser levels
 - Iterate / solve residual system (Ae=r) on coarse level
- Propagate solution to finer level
 - Followed by post-smoothing steps
- Total O(n) complexity!

- MG can be quite tricky:
 - How to build an irregular hierarchy ?
 - How many levels ?
 - Special MG pre-conditioners
 - Restriction of system
 - Prolongation of coarse solution
- [Aksoylu et al. 2003], [Shi et al. 2006]

Direct Sparse Solvers

- Dense solvers do not exploit sparsity
 - Matrix factors are dense

A=LL[⊤]

Direct Sparse Solvers

- Dense solvers do not exploit sparsity
 - Matrix factors are dense
- Band-limitation can be exploited
 - Bandwidth of factors is that of A
 - More precisely: envelope is preserved

Direct Sparse Solvers

- Dense solvers do not exploit sparsity
 - Matrix factors are dense
- Band-limitation can be exploited
 - Bandwidth of factors is that of A
 - More precisely: envelope is preserved
- Complexity
 - Factorization O(nb²)
 - Back-substitution O(nb)

Natural

LL^T

36k NZ

- Find symmetric permutation $\mathbf{A}' = \mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P}$
- ... which minimizes the band-width:
 - Cuthill-McKee algorithm

Mario Botsch, ETH Zurich

- Find symmetric permutation $\mathbf{A}^{\prime} = \mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P}$
- ... which minimizes the band-width:

Cuthill-McKee algorithm

- ... which minimizes the envelope fill-in of L:
 - Minimum Degree algorithm

- Find symmetric permutation $\mathbf{A}^{\prime} = \mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P}$
- ... which minimizes the band-width:

Cuthill-McKee algorithm

- ... which minimizes the envelope fill-in of L:
 - Minimum Degree algorithm
- ... based on recursive graph partitioning:
 - ➡ METIS algorithm

Sparse Cholesky Factorization

- Non-zero structure of L can be predicted from the non-zero structure of A
 - Build a static data structure in advance
 - Symbolic factorization
- Compute numerical entries of L based on this data structure
 - Better memory coherence
 - Numerical factorization

Sparse Cholesky Solver

- 1. Matrix re-ordering $\tilde{\mathbf{A}} = \mathbf{P}^T \mathbf{A} \mathbf{P}$
- 2. Symbolic factorization L
- 3. Numerical factorization $\tilde{\mathbf{A}} = \mathbf{L}\mathbf{L}^T$
- 4. Solve system $\mathbf{y} = \mathbf{L}^{-1} \mathbf{P}^T \mathbf{b}, \quad \mathbf{x} = \mathbf{P} \mathbf{L}^{-T} \mathbf{y}$

Sparse Cholesky Solver

Only right hand side changes

- 1. Matrix re-ordering $\tilde{\mathbf{A}} = \mathbf{P}^T \mathbf{A} \mathbf{P}$
- 2. Symbolic factorization L
- 3. Numerical factorization $\tilde{\mathbf{A}} = \mathbf{L}\mathbf{L}^T$
- 4. Solve system $\mathbf{y} = \mathbf{L}^{-1} \mathbf{P}^T \mathbf{b}, \quad \mathbf{x} = \mathbf{P} \mathbf{L}^{-T} \mathbf{y}$

Sparse Cholesky Solver

Matrix values change

- 1. Matrix re-ordering $\tilde{\mathbf{A}} = \mathbf{P}^T \mathbf{A} \mathbf{P}$
- 2. Symbolic factorization L
- 3. Numerical factorization $\tilde{\mathbf{A}} = \mathbf{L}\mathbf{L}^T$
- 4. Solve system $\mathbf{y} = \mathbf{L}^{-1} \mathbf{P}^T \mathbf{b}, \quad \mathbf{x} = \mathbf{P} \mathbf{L}^{-T} \mathbf{y}$

Overview

- Application scenarios
- Linear system solvers
- Benchmarks

Small Laplace Systems

Small Laplace Systems

3 Solutions (per frame costs)

Large Laplace Systems

Setup + Precomp. + 3 Solutions

Large Laplace Systems

3 Solutions (per frame costs)

Small Bi-Laplace Systems

Setup + Precomp. + 3 Solutions

Small Bi-Laplace Systems

3 Solutions (per frame costs)

Large Bi-Laplace Systems

Setup + Precomp. + 3 Solutions

Large Bi-Laplace Systems

3 Solutions (per frame costs)

Shi et al., Fast MG Algo

Setup + Precomp. + 3 Solutions

Shi et al., Fast MG Algo

3 Solutions (per frame costs)

Conclusion

- Typical geometry processing problems are
 - large but sparse
 - symmetric positive definite
- Multigrid solvers
 - Require careful implementation
 - Use it if mesh / matrix changes frequently
- Direct sparse solvers
 - Easy to use (black-box)
 - Well suited for multiple rhs, or if only matrix values change