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Model Repair

• model repair is the removal of
artifacts from a geometric model
such that it becomes suitable for 
further processing.

• produce a nice, manifold triangle mesh
– with boundary or
– without boundary (watertight)
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Model Repair

• types of input

• surface-oriented algorithms
– Filling holes in meshes [Liepa 2003]

• volumetric algorithms
– Simplification and repair of polygonal models using 

volumetric techniques [Nooruddin and Turk 2003]
– Automatic restoration of polygon models

[Bischoff, Pavic, Kobbelt 2005]

• conclusion & outlook
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Range Images
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• registered range images are a set of patches that 
describe different parts of an object. 

Registration
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Range Images
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• large areas of overlap are ...
– ... necessary for registration but
– ... bad for consistency

• how to merge the patches into
a single mesh?
– inconsistent geometry
– incompatible connectivities

large scale
overlaps
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Range Images
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• successfully merged range
images are manifold meshes
with holes and islands
(i.e. boundaries)
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Range Images
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• holes and islands are due to obstructions in the
line of sight of the scanner

• identify correspondences
between holes and islands

• fill holes
– smoothly
– geometry transfer/synthesis

• avoid intersections holes and
isles
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Contoured Meshes

• contoured meshes have been 
extracted from a volumetric 
representation
(e.g. by marching cubes)
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Contoured Meshes

• contoured meshes are usually manifold and 
closed, but may contain topological noise
– disconnected components 
– spurious handles
– cavities
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Triangulated NURBS

• set of patches that contain small scale gaps and 
overlaps
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Triangulated NURBS

• set of patches that contain small scale gaps and 
overlaps

10
10



Leif Kobbelt     RWTH Aachen University

Triangulated NURBS

• gaps and overlaps are due to triangulating a 
common (trimmed) patch boundary differently 
from both sides

• issues
– consistent orientation
– structure preservation
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small scale
gaps and overlaps
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Triangulated NURBS
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• typical workflow, e.g., in CAD/CAM:

Editing Repair Simulation

manual often:manu
al(!) automatic

NURBS

triangle 
mesh
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Triangle Soups

• a triangle soup is a set of triangles without 
connectivity information
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Triangle Soups

• a triangle soup is a set of triangles without 
connectivity information
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Triangle Soups

• good for visualization but bad for downstream 
applications that require manifold meshes

• in addition to the artifacts we already encountered:
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intersections

singular
vertex

complex edges

incompatible
orientations
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Not Covered In This Lecture ...

• geometrical noise
➙ smoothing (Mark)

• badly meshed manifolds
➙ remeshing (Pierre)
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Model Repair

• types of input

• surface-oriented algorithms
– Filling holes in meshes [Liepa 2003]

• volumetric algorithms
– Simplification and repair of polygonal models using 

volumetric techniques [Nooruddin and Turk 2003]
– Automatic restoration of polygon models

[Bischoff, Pavic, Kobbelt 2005]

• conclusion & outlook
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Surface-Oriented Algorithms

• surface oriented approaches 
explicitly identify and resolve 
artifacts

• methods
– snapping
– splitting
– stitching
– ...
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Surface-Oriented Algorithms

• advantages
– fast
– conceptually easy
– memory friendly
– structure preserving, minimal modification

of the input
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Surface-Oriented Algorithms

• problems
– not robust

• numerical issues
• inherent non-robustness

– no quality guarantees on the output

19
19



Leif Kobbelt     RWTH Aachen University

Example Algorithm

• algorithm for filling holes
    Peter Liepa
    Filling Holes in Meshes
    In Proc. Symposium on Geometry Processing 2003

• three stages
1.  compute a coarse triangulation T to fill a hole
2.  refine the triangulation, T → Tʼ, to match the vertex

  densities of the surrounding area
3.  smooth the triangulation Tʼ to match the geometry

  of the surrounding

20
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Filling Holes in Meshes - 1

• compute a coarse triangulation T

21
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Filling Holes in Meshes - 1

• compute a coarse triangulation T
of minimal weight w(T)
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n vertices,
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Filling Holes in Meshes - 1

• weight w(T) is a mixture of
– area(T) =     area(∆ )

– maximum dihedral angle in T

• thus, we favour triangulations of low area and low 
normal variation

23

∆ ∈ T
∑
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Filling Holes in Meshes - 1

• let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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w[2,9] = min(
                w(∆(2,3,9)) + w[3,9],
  w[2,4] + w(∆(2,4,9)) + w[4,9],
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Filling Holes in Meshes - 1

• let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c

• recursion formula

• dynamic programming leads to an O(n3) algorithm

31

w[a,c] = min w[a,b] + w(∆(a,b,c)) + w[b,c]
a<b<c

w[x,x+1] = 0
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Filling Holes in Meshes - 2+3

• refine the triangulation such that its vertex 
density matches that of the surrounding area

➡ Pierreʼs talk about remeshing

• smooth the filling such that its geometry matches 
that of the surrounding area

➡ Markʼs talk about mesh smoothing
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Filling Holes in Meshes - 2+3

• refinement and smoothing
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Input model Minimal triangulation Refined triangulation

Output model Output model
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Filling Holes in Meshes

• what problems do we encounter?
– islands are not incorporated
– self-intersections cannot be excluded
– quality depends on boundary distortion
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Model Repair

• types of input

• surface-oriented algorithms
– Filling holes in meshes [Liepa 2003]

• volumetric algorithms
– Simplification and repair of polygonal models using 

volumetric techniques [Nooruddin and Turk 2003]
– Automatic restoration of polygon models

[Bischoff, Pavic, Kobbelt 2005]

• conclusion & outlook
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Volumetric Algorithms

1.  convert the input model into an intermediate
  volumetric representation ➙ loss of information

37

voxel grid adaptive octree BSP tree
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Volumetric Algorithms

1.  convert the input model into an intermediate
  volumetric representation ➙ loss of information

2.  discrete volumetric representation ➙ robust
  and reliable processing
–  morphological operators (dilation, erosion)
–  smoothing
–  flood-fill to determine interior/exterior
– ...
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Volumetric Algorithms

1.  convert the input model into an intermediate
  volumetric representation ➙ loss of information

2.  discrete volumetric representation ➙ robust
  and reliable processing
–  morphological operators (dilation, erosion)
–  smoothing
–  flood-fill to determine interior/exterior

3.  extract the surface of a solid object from the
  volume ➙ manifold and watertight
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Volumetric Algorithms

1.  convert the input model into an intermediate
  volumetric representation ➙ loss of information

2.  discrete volumetric representation ➙ robust
  and reliable processing
–  morphological operators (dilation, erosion)
–  smoothing
–  flood-fill to determine interior/exterior

3.  extract the surface of a solid object from the
  volume ➙ manifold and watertight
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Volumetric Algorithms

• advantages
– fully automatic
– few (intuitive) user parameters
– robust
– guaranteed manifold output
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Volumetric Algorithms

• problems
– slow and memory intensive
➙ adaptive data structures

– aliasing and loss of features
➙ feature sensitive reconstruction (EMC, DC)

– loss of mesh structure
➙ bad luck (... hybrid approaches)

– large output
➙ mesh decimation (Markʼs talk)
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Example 1

• example algorithm 1
% F. S. Nooruddin and G. Turk
% Simplification and Repair of Polygonal Models Using Volumetric Techniques
% IEEE Transactions on Visualization and Computer Graphics 2003

• issues
– classification of sample points as being

inside or outside of the object
(parity count, ray stabbing)

– sampling the volume
– extracting the mesh
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Nooruddin and Turkʼs Method

• point classification: Layered depth images (LDI)

44

x

y

44



Leif Kobbelt     RWTH Aachen University

Nooruddin and Turkʼs Method

• point classification: Layered depth images (LDI)
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Nooruddin and Turkʼs Method

• point classification: Layered depth images (LDI)
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Nooruddin and Turkʼs Method

• point classification: Layered depth images (LDI)
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• point classification: Layered depth images (LDI)
1. record n layered depth images
2. project the query point x into each depth image
3. if any of the images classifies x as exterior, then

 x is globally classified as exterior else as interior

Nooruddin and Turkʼs Method
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• supersampling

• filtering
– Gaussian
– morphological filters 

(dilation, erosion)
• model simplification
• reduction of topological 

noise

• marching cubes

Nooruddin and Turkʼs Method

49
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Nooruddin and Turkʼs Method
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• supersampling

• filtering
– Gaussian
– morphological filters 

(dilation, erosion)
• model simplification
• reduction of topological 

noise

• marching cubes

Nooruddin and Turkʼs Method
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100×100×100

Input model Input model

200×200×200 300×300×300

50×50×50
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Supersampling

Raw Smoothing

Supersampling + smoothing

Marching Cubes
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• voxelization
– characteristic function / signed distance function
– cannot handle all kinds of inconsistencies

• repair
– uniform treatment of voxel
– cannot exploit local shape information

• extraction
– thresholding
– sampling artifacts

Nooruddin and Turkʼs Method
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Example 2

• example algorithm 2
% S. Bischoff, D. Pavic, L. Kobbelt 
% Automatic Restoration of Polygon Models
% Transactions on Graphics 2005
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Overview
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volumetric
representation

volumetric
representation

manifold
mesh

extraction

gap filling,
removal of

interior geometryvoxelization
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Overview

57
57



Leif Kobbelt     RWTH Aachen University

Overview

57
57



Leif Kobbelt     RWTH Aachen University

Overview

57
57



Leif Kobbelt     RWTH Aachen University

Overview

57
57



Leif Kobbelt     RWTH Aachen University

Overview

57
57



Leif Kobbelt     RWTH Aachen University

Overview

57
57



Leif Kobbelt     RWTH Aachen University

Overview
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Conversion
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• adaptive octree: subdivide a cell, if it contains 
multiple planes or a boundary

voxel topology
=

polygon topology
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Closing Gaps
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• close gaps by dilating the boundary voxels
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Closing Gaps
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• close gaps by dilating the boundary voxels
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Closing Gaps
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• close gaps by dilating the boundary voxels
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Determine Exterior

60

• determine the exterior by flood filling & dilation
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Determine Exterior
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• determine the exterior by flood filling & dilation
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Extract the Surface
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• extract the surface by a variant of Dual Contouring
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Extract the Surface
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• extract the surface by a variant of Dual Contouring
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Extract the Surface
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• extract the surface by a variant of Dual Contouring
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Results
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Results
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Results
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original
1124 triangles

reconstruction
279892 triangles

(at 1000³)

decimated
7018 triangles
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Results
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without
gap filling

with
gap filling
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Results
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Model Repair

• types of input

• surface-oriented algorithms
– Filling holes in meshes [Liepa 2003]

• volumetric algorithms
– Simplification and repair of polygonal models using 

volumetric techniques [Nooruddin and Turk 2003]
– Automatic restoration of polygon models

[Bischoff, Pavic, Kobbelt 2005]

• conclusion & outlook
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Conclusion

• mesh repair to remove artifacts that arise in 
various types of input models

68
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Conclusion

• surface-oriented algorithms ...
– fast, structure preserving
– often not robust, need user interaction and cannot 

give quality guarantees on the output

• volumetric algorithms ...
– use an intermediate volumetric representation and 

thus produce guaranteed watertight meshes
– suffer from (topological) sampling problems
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History of Mesh Repair
– Bøhn, Wozny: Automatic CAD Model Repair: Shell-Closure. % % % 1992

– Mäkelä, Dolenc: Some Efficient Procedures for Correcting Triangulated Models. % % 1993

– Turk, Levoy: Zippered Polygon Meshes from Range Images. % % % 1994

– Barequet, Sharir: Filling Gaps in the Boundary of a Polyhedron. % % % 1995

– Curless, Levoy: A Volumetric Method for Building Complex Models from Range Images.% 1996 

– Barequet, Kumar: Repairing CAD Models. % % % % 1997

– Murali, Funkhouser. Consistent Solid and Boundary Representations.% % % 1997

– Guéziec, Taubin, Lazarus, Horn: Cutting and Stitching: [...] % % % 2001

– Guskov, Wood: Topological Noise Removal.% % % % 2001

– Borodin, Novotni, Klein: Progressive Gap Closing for Mesh Repairing.% % % 2002

– Davis, Marschner, Garr, Levoy: Filling Holes in Complex Surfaces Using Volumetric Diffusion.% 2002

– Liepa: Filling Holes in Meshes.% % % % % 2003

– Greß, Klein: Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-Trees.% 2003

– Nooruddin, Turk: Simplification and Repair of Polygonal Models Using Volumetric Techniques.% 2003

– Borodin, Zachmann Klein: Consistent Normal Orientation for Polygonal Meshes.% % 2004

– Ju: Robust Repair of Polygonal Models.% % % % % 2004

– Bischoff, Pavic, Kobbelt: Automatic Restoration of Polygon Models.% % % 2005

– Podolak, Rusinkiewicz: Atomic Volumes for Mesh Completion.%% % 2005

– Shen, O'Brien, Shewchuk: Interpolating and Approximating Implicit Surfaces from Polygon Soup.% 2005
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• Surface-oriented
• Volumetric
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Outlook

• hybrid algorithms that are ...
– ... robust and
– ... structure preserving

• Bischoff, Kobbelt: Structure Preserving CAD Model Repair. Eurographics 2005
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